An Optimization Algorithm for WNN Based on Immune Particle Swarm
نویسندگان
چکیده
Wavelet neural network (WNN) is a combination of wavelet analysis and neural network and has the strong fault tolerance, the strong anti-jamming and the strong adaptive ability. However, WNN is likely to trap local minimum and premature convergence. According to these shortcomings, particle swarm optimization (PSO) algorithm is applied to wavelet neural network (WNN) and has good effect. This paper presents a PSO algorithm based on artificial immune (AI). Through importing antibody diversity keeping mechanism, this algorithm can retain high fitness of particles and ensure the diversity of population. Then, the new algorithm is applied to the training of WNN and the parametric optimization. Through some simulation experiments, this paper concludes that the presented algorithm has stronger convergence and stability than the basic particle swarm optimization algorithm on optimizing WNN, and has the better performance of reducing the number of training and error.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملLpso-wnn Denoising Algorithm for Speech Recognition in High Background Noise
This paper introduces an intelligent evaluation method based on improved PSO-WNN (partiele swarm optimization-wavelet neural network) for speech denoising in high background noise. Firstly, by using Lyapunov stability theory, convergence conditions of a single particle is discussed and based on the result, a new strategy is introduced to improve the performance of the PSO algorithm. Then, the i...
متن کاملAN EFFICIENT HYBRID ALGORITHM BASED ON PARTICLE SWARM AND SIMULATED ANNEALING FOR OPTIMAL DESIGN OF SPACE TRUSSES
In this paper, an efficient optimization algorithm is proposed based on Particle Swarm Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is used to perform further investigation in these regions. This strategy helps to use of information obtained by swarm in an opt...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کامل